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This document consists of a series of definitions and proposition, stated as problems, designed with the
intent to help you master the essential aspects of ring theory. To use them, proceed as follows.

Memorize every definition. After memorizing a definition, think of three examples.

Write a formal proof for every problem. After solving a problem, think of three examples.

When writing proofs, you may assume all of your previous knowledge of sets, functions, and numbers.
In particular, understand and use the propositions regarding integers, such as prime factorization and the
formulas n = mq + r and xm + yn = ged(m,n). Try to use only that knowledge of group theory that seems
presupposed by the problem.

When writing proofs, proceed directly from the definitions on the worksheet without looking in the book
for further explanation or proofs. I think that all problems can be solved using the previous knowledge
mentioned above, definitions given in the worksheets, and previous results that you will have shown from
the worksheets. I've found that for me, after having been exposed to the subject initially, this is really the
best way to learn abstract mathematics.

For some of the worksheets, you may wish to merely read the definitions and statements so that you can
use them on later worksheets.

For some of the problems, you may see the proof clearly without writing it down. For other problems, it
probably is a good idea to try to write a proof on paper.

Notice that the definition of ring here is slightly different from that used by our textbook, and we have
corresponding differences in the definition of subring and homomorphism:

e Assume that all rings have a multiplicative identity, or unity;
e Assume that all subrings contain the same unity;
e Assume that all ring homomorphisms send unity to unity.

This approach simplifies some statements about the cases in which we are most interested.



Ring Theory Worksheet I
Rings

Definition 1. A ring is a set R together with a pair of binary operations
+:RxR—Rand - :RxR—R

such that

(R1) a+b="b+ a for every a,b € R;

(R2) (a+b)+c=a+ (b+c) for every a,b,c € R;

(R3) there exists 0 € R such that a + 0 = a for every a € R;

(RA4) for every a € R there exists —a € R such that a + (—a) = 0;
(R5) (ab)c = a(bc) for every a,b,c € R;

(R6) there exists 1 € R such that a-1 =1-a = a for every a € R;
(R7) a(b+ ¢) = ab + ac for every a,b,c € R;

(R8) (a+ b)c = ac + be for every a,b,c € R.

Remark 1. Properties (R1) through (R4) say that R is an abelian group under addition. Properties (R5)
and (R6) say that R is a monoid under multiplication. Properties (R7) and (R8) relate the two binary
operations on R.

Definition 2. We say that a ring R is commutative if ab = ba for every a,b € R.

Problem 1. Let R be a ring and let z,y € R such that  +a = a and y + a = a for every a € R.
Show that « = y. Thus 0 is unique. We call 0 the additive identity, or zero, of R.

Problem 2. Let R be a ring and let x,y € R such that za = ax = a and ya = ay = a for every a € R.
Show that x = y. Thus 1 is unique. We call 1 the multiplicative identity, or unity, of R.

Problem 3. Let R be a ring and let a,b,c € R such that a4+ b =0 and a + ¢ = 0.
Show that b = ¢. Thus —a is unique. We call —a the additive inverse of a.

Problem 4. Let R be a ring and let a,b,c € R and suppose that ab=ba =1 and ac = ca = 1.
Show that b = c¢. Denote such an element by a~'. Thus e~ ! is unique if it exists. We call a=' the

multiplicative inverse, or simply the inverse, of a.

Problem 5. Let R be a ring and let a,b € R.
(a) Show that a-0=0-a =0.
(b) Show that (—a)b = a(—b) = —(ab).

Problem 6. Let R be a ring and let a,b € R. Let n € N.
(a) Show that n(ab) = (na)b = a(nb).
(b) Show that (—n)a = —(na).

Remark 2. The standard rules for additive and multiplicative notation are in force.

The additive identity is denoted by 0 and the additive inverse of a is denoted —a. If n € Z, then na =0
ifn=0,na=a+---+a (ntimes) if n > 0, and na = (—a) +--- + (—a) (n times) if n < 0.

The multiplicative identity is denoted by 1 and the multiplicative inverse of a (if it exists) is denoted by
a”l. IfneN, thena”=1ifn=0and a® =a-----a (n times) if n > 0. If a has a multiplicative inverse
and n < 0, then a” = (a=!)~". The notation 0° is undefined. The product symbol - may be dropped, so
that multiplication is denoted by juxtaposition.

Remark 3. To emphasize that a certain element acts as an identity in the ring R, we may write Or or 1p
instead of just 0 or 1. This is useful when comparing rings.
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Examples of Rings

Remark 4. To show that R is a ring, you must verify that the given operations addition and multiplication
are well-defined functions from R X R to R, and that they satisfy the properties (R1) through (RS).

In practice, however, many of these steps are tedious, and only the ones in question or of interest are
verified. In particular, check that the binary operations are well-defined (if this is an issue) and closed (that
is, into R); specify the zero, the form of additive inverses, the unity, and the form of multiplicative inverses.

Problem 7. Let R = {0}. Define 0+0=0and 0-0=0.
Show that R is a ring, called the zero ring .

Remark 5. If R is a ring in which the additive and multiplicative identities are the same element, then R
is the zero ring, because if a € R, then 0 =0-a=1-a=a, so a = 0.

Problem 8. Verify that the following are rings under their standard addition and multiplication:
(@ Z={..,-2,—-1,0,1,2,...}, the integers;

(b) Q ={% | a,b € Z}, the rational numbers;

(¢) R, the real numbers;

(d) C={a+ib|a,beR and i> = —1}, the complex numbers.

Problem 9. Let R and S be rings. Define addition and multiplication on their cartesian product R x S
coordinatewise by

o (r1,81) + (ro,82) = (11 + ro, 81 + S2);
o (r1,81) - (re,s2) = (r181,7282).
Verify that R x S is a ring, called the product ring of R and S.

Problem 10. Let X be a set and let P(X) be the collection of all subsets of X. Define addition and
multiplication on P(X) by

e A+ B=AAB=(AUB)N (ANB)=(A~NB)U(B~\ A);
e A-B=ANB.
Verify that P(X) is a commutative ring, called the power set of X.

Problem 11. Let X be a set and let R be a ring. Let F(X, R) denote the set of all functions from X to R.
Define addition and multiplication of functions in F(X, R) pointwise by

o (f+9)@) = (&) + g(a)
o (f-9)@) = f@)g(x).
Verify that F(X, R) is a ring, called the ring of functions from X to R.
Problem 12. Let A be an additive abelian group and set
End(A)={f:A— A| f(a+b) = f(a) + f(b) for all a,b € A}.
Define addition and multiplication of functions in End(A) by
o (f+9)(a) = f(a) +g(a);
o (f-9)(a) = fogla) = f(g(a)).
Verify that End(A) is a ring, called the ring of endomorphisms of A.
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Commutative Invertibility and Entireness

Definition 3. Let R be a commutative ring and let a € R.
We say that a is entire if ab =0 =-b = 0 for every b € R.
We say that a is cancelable if ab = ac = b = ¢ for every b,c € R.
We say that a is invertible if there exists an element a~' € R such that aa~! = 1.

Problem 13. Let R be a commutative ring and let a € R. Show that a is entire if and only if a is cancelable.
Problem 14. Let R be a commutative ring and let ¢ € R. Show that if a is invertible, then a is entire.

Definition 4. Let R be a nonzero commutative ring. Set
R* ={z € R| z is invertible }

and
R* ={zx € R| z is entire }.

Problem 15. Let R and S be nonzero commutative rings.
(a) Show that (R x S)* = R* x S*.
(b) Show that (R x S)®* = R* x S°.

Problem 16. Let R be a nonzero commutative ring. Show that R* is an abelian group under multiplication.

Definition 5. Let R be a commutative ring and let a € R.
We say that a is a zero divisor if @ # 0 and there exists b € R ~ {0} such that ab = 0.

Problem 17. Let R be a commutative ring and let a € R.
Show that a is a zero divisor if and only if @ is a nonzero nonentire element of R.

Problem 18. Let R and S be commutative rings and let A be the set of zero divisors in R x S. Show that
A=RXx S~ ((R*x S*)U{(0g,0s)}).

Definition 6. Let R be a nonzero commutative ring.
We say that R is an integral domain if every nonzero element of R is entire.
We say that R is a field if every nonzero element of R is invertible.

Problem 19. Let R be a commutative ring. Show that if R is a field, then R is an integral domain.

Problem 20. Let R be a finite integral domain. Let a € R ~\ {0} and define a function
te : R — R given by p,(x) = ax.

(a) Show that pu, is injective.
(b) Show that u, is surjective.
(c) Show that a is invertible.
(d) Conclude that R is a field.
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General Invertibility and Entireness

Definition 7. Let R be a ring and let a € R.
We say that a is entire if ab=0=b=0 and ba =0 = b =0 for every b € R.
We say that a is cancelable if ab = ac = b = ¢ and ba = ca = b = ¢ for every b, c € R.
We say that a is invertible if there exists an element a~' € R such that aa 'a"'a = 1.

Remark 6. These definitions are compatible with our definitions in the commutative case, and supersede
them.

Problem 21. Let R be a ring and let a € R. Suppose that there exist b, ¢ € R such that ab =1 and ca = 1.
Show that b = ¢, so that a is invertible.

Problem 22. Let R be a ring and let @ € R. Show that a is entire if and only if a is cancelable.
Problem 23. Let R be a ring and let @ € R. Show that if a is invertible, then a is entire.

Definition 8. Let R be a nonzero ring. Set
R* = {z € R | x is invertible }

and
R* = {z € R| x is entire }.

Problem 24. Let R and S be nonzero rings.
(a) Show that (R x S)* = R* x S*.
(b) Show that (R x S)®* = R® x S°.

Problem 25. Let R be a nonzero ring. Show that R* is a group under multiplication.

Definition 9. Let R be a ring and let a € R.
We say that a is a zero divisor if a # 0 and there exists b € R ~ {0} such that ab =0 or ba = 0.

Problem 26. Let R be a ring and let a € R.
Show that a is a zero divisor if and only if a is a nonzero nonentire element of R.

Problem 27. Let R and S be rings and let A be the set of zero divisors in R x S. Show that
A=Rx S~ ((R*xS°)U{(0g,05)}.

Definition 10. Let R be a nonzero ring.
We say that R is a domain if every nonzero element of R is entire.
We say that R is a division ring if every nonzero element of R is invertible.

Problem 28. Let R be a ring. Show that if R is a division ring, then R is an domain.

Problem 29. Let R be a finite domain. Show that R is a division ring.
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Subrings

Definition 11. Let R be a ring. A subring of R is a subset S C R such that
(S0) 1€ S;
(S1)a,beS=a+bes;
(82) ae S= —a€esS;
(83) a,be S=abe S.
If S is a subring of R, we write S < R.

Remark 7. Properties (S1) and (S2) say that S is an additive subgroup of R.

Problem 30. Let R be a ring and let S < R.
Show that the restriction of 4+ and - to S x S induces a ring structure on S.

Problem 31. Let R be a ring. Show that R < R.
Problem 32. Let F be a field and let R < F. Show that R is an integral domain.

Problem 33. Let R be a ring and define the center of R to be
Z(R) ={x € R| zy = yx for all y € R}.
Show that Z(R) < R.

Definition 12. A subfield of R is a subring F' < R such that
(F0) 1 € F;

(F1) a,b € F = ab = ba;

(F2) a € F ~ {0} = a is invertible and a~! € F.

Problem 34. Let R be a ring and let F' < R be a subfield.
Show that the restriction of + and - to F' x F' induces a field structure on F.

Definition 13. Let X be a set and let € C P(X) be a collection of subsets of X. Define the intersection
and union of the collection by

e NC={zeX|zeCforal CeCl
e UCL={ze€ X |z e for some C € C}.

Problem 35. Let R be a ring and let § be a nonempty collection of subrings of R.
Show that NS is a subring of R.

Problem 36. Let R be a ring and let § be a nonempty collection of subfields of R.
Show that N8 is a subfield of R.

Definition 14. Let R be a ring and let X C R. The subring generated by X is denoted by grp(X) and is
defined to be the intersection of all subrings of R which contain X.

Problem 37. Let R be a ring and let X,Y C R. Show that grp(X NY) = grp(X) Nngrp(Y).

Definition 15. Let F be a field and let X C F. The subfield generated by X is denoted by gf-(X) and is
defined to be the intersection of all subfields of F' which contain X.

Problem 38. Let F be a field and let X,Y C F. Show that gf (X NY) = gf o (X) Ngfp(Y).
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Ring Homomorphisms

Definition 16. Let R and S be rings. A ring homomorphism from R to S is a function ¢ : R — S such
that
(HO) 6(1x) = s
(H1) ¢(a+0b) = ( )+ ¢(b) for all a,b € R;
(H2) ¢(adb) = ¢(a)d(b) for all a,b € R.

A bijective ring homomorphism is called a ring isomorphism. If there exists a ring isomorphism from R
to S we say that R and S are isomorphic, and write R =2 S.

An isomorphism from a ring onto itself is called a ring automorphism.

Remark 8. Property (H1) says that ¢ is an additive group homomorphism.

Problem 39. Let ¢: R — S be a ring homomorphism.
(a) Show that ¢(0gr) = 0g.
(b) Show that ¢(—r) = —¢(r) for every r € R.

Problem 40. Let ¢ : R — S be a ring homomorphism with S nonzero.
Show that if 7 € R is invertible, then ¢(r) is invertible and ¢(r~1) = ¢(r) L.

Problem 41. Give an example of a ring homomorphism ¢ : R — S such that ¢(r) = s for some r € R,
s € S, where s is invertible but r is not.

Problem 42. Let ¢ : R — S be a ring isomorphism. Then ¢! : S — R is a bijective function. Show that
¢! is a ring isomorphism.

Problem 43. Let ¢ : R — S be a ring homomorphism and let 7" < R.
Show that ¢(T) < S

Problem 44. Let ¢: R — S be a ring homomorphism and let 7' < S.
Show that ¢~ 1(T) < R.

Problem 45. Let ¢ : R — S and ¥ : S — T be ring homomorphisms.
Show that ¥ o ¢ : R — T is a ring homomorphism.

Problem 46. Let ¢ : R — S be a ring homomorphism and let X C R.
Show that ¢(gr(X)) = grs(6(X)).

Problem 47. Let E and F be a fields.
Let ¢ : E — F be a ring homomorphism and let X C E.

Show that ¢(gfp(X)) = gfp(¢(X)).

Problem 48. Let ¢ : R — S be a ring homomorphism. Let ¢* : R* — S be the restriction of ¢ to R*.
(a) Show that ¢* : R* — S* is a group homomorphism.
(b) Show that if ¢ is an bijective, then ¢* is bijective.

Problem 49. Let ¢ : F — S be a ring homomorphism, where F' is a field and S is nonzero.
Show that ¢ is injective. Thus the image of F' in S is a subfield of S which is isomorphic to F.
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Ideals

Definition 17. Let R be a ring. An ideal of R is a subset I C R such that
M)abel=a+bel
(I2) aclandr € R=ra,ar € I.

If I is an ideal of R, we write I < R.

Remark 9. Since —1 € R, properties (I1) and (I2) say that I is an additive subgroup of R.
Problem 50. Let R be a ring. Show that {0} < R and R< R.

Definition 18. Let R be a ring and let I < R.
We say that I is improper if I = R; otherwise I is proper.
We say that I is trivial if I = {0}; otherwise I is nontrivial.
We say that R is simpleif <R = 1= {0} or I = R.

Problem 51. Let R be a ring and I < R. Show that if I contains an invertible element, then I is improper.
Problem 52. Let R be a commutative ring. Show that R is simple if and only if R is a field.
Problem 53. Let R be a ring and let J be a collection of ideals of R. Show that NJ < R.

Problem 54. Let R be a ring and let I,J < R. Set
I+J={a+blacl,be J}.
Show that I + J < R.

Definition 19. Let ¢ : R — S be a ring homomorphism. The kernel of ¢ is denoted by ker(¢) and is defined
to be the subset of R given by

ker(¢) = {r € R| ¢(r) = Os}.

Problem 55. Let ¢ : R — S be a ring homomorphism.
Show that ker(¢) < R.

Problem 56. Let ¢ : R — S be a ring homomorphism.
Show that ¢ is injective if and only if ker(¢) = {0}.

Problem 57. Let ¢ : R — S be a ring homomorphism and let J < S.
Show that ¢~1(J) < R.

Problem 58. Let ¢ : R — S be a surjective ring homomorphism and let I < R.
Show that ¢(I) < R.

Problem 59. Give an example of a nonsurjective ring homomorphism ¢ : R — S and an ideal I < R such
that ¢(I) is not an ideal in S.

Problem 60. Let R be a ring and let J be a nonempty collection of ideals in R. Show that NJ < R.

Definition 20. Let R be a ring and let X C R. The ideal generated by X is denoted gip(X) or (X) and is
defined to be the intersection of all ideals of R which contain X.

Problem 61. Let R be a ring and let I, J < R. Show that gip(IUJ) =1+ J.

Problem 62. Let ¢ : R — S be a surjective ring homomorphism and let X C R.
Show that ¢(gir(X)) = gis(6(X)).
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Factor Rings

Definition 21. Let R be a ring and let I <R. Let © € R. The coset for z of I in R is the set
z+I={z+alael}
Let z,y € R. We say that x and y are congruent modulo I, and write x =y mod I, if x —y € I.

Problem 63. Let R be a ring and let I < R.
(a) Show that 0 € I.
(b) Let z,y € R. Show that x + I =y+ I <z —yel.

Remark 10. Recall that the cardinality of a set X is denoted |X| and is (loosely speaking) the number of
elements in the set. To show that |X| = |Y], is suffices to find a bijective function from X to Y.

Problem 64. Let R be a ring and let I < R.

(a) Show that congruence modulo I is an equivalence relation.

(b) Show that the congruence classes modulo I are the cosets of I in R.

(c) Show that |z + I| = |y + I| for every z,y € R.

(d) Conclude that if R is finite, then the cardinality of R is equal to the cardinality of I times the number
of cosets of I in R.

Problem 65. Let R be a ring and let 7 < R. Let R/I denote the collection of cosets of I in R. Define
addition and multiplication on R/I by (x +I)+ (y+1) = (zr+y)+ 1 and (x + I)(y + I) = zy + I. Show
that these operations are well-defined and induce a ring structure on R/I. We call R/I a factor ring, or the
quotient of R by I.

Problem 66. Let R be a ring and let I < R. Define a function 8 : R — R/I by f(z) = = + I. Show that
0 is a surjective ring homomorphism whose kernel is I. We call 8 the canonical homomorphism from R to
R/I.

Remark 11. Thus every kernel is an ideal and every ideal is a kernel.

Definition 22. Let R be a ring and let r,s € R. Then Lie bracket of r and s is
[r,s] = rs — sr.
Problem 67. Let R be a ring and set
I=gip({r,s) | r.s € B).
Show that R/I is commutative.

Problem 68. Let R be a commutative ring and set

I =gip(R~\R®).
Show that if I is a proper ideal, then R/ is an integral domain.
Problem 69. Let R be a commutative ring and set

I =gip(R~R").

Show that if I is a proper ideal, then R/T is a field.
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Isomorphism Theorem

Problem 70. (Isomorphism Theorem)

Let ¢ : R — S be a ring homomorphism and let K = ker(¢). Let § : R — R/K be the canonical
homomorphism. Define a function ¢ : R/K — S by ¢(x + K) = ¢(x).

(a) Show that ¢ is well-defined.

(b) Show that ¢ is an injective ring homomorphism.

(c) Show that ¢ = ¢ o 3.

(d) Show that if ¢ is surjective, then ¢ is a ring isomorphism.

Remark 12. Thus every homomorphic image of R is isomorphic to a quotient of R, and every quotient of
R is a homomorphic image of R.

Problem 71. Let R be a ring and let I, J < R such that I C J. Let 8: R — R/I and o : R — R/J be the
canonical homomorphisms. Set J/I ={a+1¢€ R/I|a € J}. Define v: R/I — R/J by v(a+1I)=a-+J.
(a) Show that + is a well-defined surjective ring homomorphism.

(b) Show that a = v o S.

(c) Show that J/I<R/I.

(d) Show that

R/I

R
J I

Problem 72. (Correspondence Theorem)
Let ¢ : R — S be a surjective ring homomorphism and let K = ker(¢). Set

J={I<R|KcCI} and J={J<S}

Define a function
®:I—7 by D) =¢().

(a) Show that ® is bijective.
(b) Show that I1 C I, < @(Il) - (I)(IQ)

Remark 13. Thus the ideals in the range of a ring homomorphism correspond to the ideals in the domain
which contain the kernel. This correspondence is inclusion preserving. Via the isodimorphism theorem, this
is equivalent to the fact that the ideals in R which contain I correspond to the ideals in R/I.

Problem 73. (Chinese Remainder Theorem)
Let R be a commutative ring and let I, J < R such that I + J = R.
Define a function ¢ : R — R/I x R/J by ¢(r) = (r+ I,7 + J).
(a) Show that for every a € R there exist ,y € R such that x =a mod I and y =a mod J.
(b) Show the ¢ is a surjective homomorphism with kernel 7N J.
(c) Conclude that
R/(INJ)=R/I x R/J.
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Characteristic

Problem 74. Let Z be the set of integers and for n € Z, set nZ = {na | a € Z}.
Show that nZ <Z, so that Z/nZ is a ring.

Problem 75. Let [ <Z. Show that there exists a unique nonnegative integer n € Z such that I = nZ. We
say that n generates I, since I is the ideal generated by the set {n} in Z.

Definition 23. Let n be a positive integer. Set Z,, = Z/nZ. We call Z,, the ring of integers modulo n.
Problem 76. Let n be a positive integer. Show that the following conditions are equivalent.

(i) n is prime;

(ii) Z, is an integral domain;
(iii) Z, is a field.

Remark 14. Thus every quotient of Z by a nontrivial ideal is either a field or a nondomain. We will see
later that this holds for every commutative ring R whose ideals are of the form aR for some a € R.

Problem 77. Let R be a ring. Show that there exists a unique ring homomorphism ¢ : Z — R.

Definition 24. Let R be a ring and let ¢ : Z — R be the unique ring homomorphism from Z to R.
The characteristic of R is the unique nonnegative generator of ker(¢). Denote this integer by char(R).
The characteristic subring of R is ¢(Z), the image of Z in R under ¢. Denote this subring by H(R).

Notation 1. Viewing a ring R as an additive group, let ord™ (a) denote the additive order of a € R.

Problem 78. Let R be a ring and let ¢ : Z — R be the unique ring homomorphism from Z to R. Let n € N
be a positive integer. Show that the following statements are equivalent:

(i) n = char(R);

(ii) n = ord™(1);
(iii) na = 0 for every a € R;
(iv) H(R) ¥ Z,.

Problem 79. Let R be a ring.
(a) Show that H(R) = grp({1}).
(b) Show that H(R) < Z(R).

Problem 80. Let D be an integral domain.
(a) Show that either char(R) = 0 or char(R) = p for some prime p.
(b) Show that either H(R) = Z or H(R) = Z, for some prime p.

Problem 81. Let R be a ring and let ¢ : R — R be an automorphism.
Show that ¢(a) = a for every a € H(R).
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Principal, Maximal, and Prime Ideals

Definition 25. Let R be a ring and let I < R.
We say that I is a principal ideal if I = gip({a}) for some a € R.

Problem 82. Let R be a commutative ring and let a € R. Let aR = {ax | z € R}.
Show that aR is a principal ideal.

Problem 83. Let R be a commutative ring and let I < R be a principal ideal.
Show that there exists a € R such that I = aR.

Problem 84. Let ¢: R — S be a surjective ring homomorphism, where R is commutative.
(a) Let a € R. Show that ¢(aR) = ¢(a)S.
(b) Conclude that the surjective homomorphic image of a principal ideal is principal.

Definition 26. A principal ring is a commutative ring in which all ideals are principal.

Problem 85. Let R be a principal ring.
(a) Let I < R. Show that R/I is a principal ring.
(b) Let ¢ : R — S be a surjective ring homomorphism. Show that S is a principal ring.

Definition 27. A principal ideal domain (pid) is an integral domain in which all ideals are principal.
Remark 15. Recall that every ideal in Z is generated by a unique nonnegative integer. Thus Z is a pid.

Definition 28. Let R be a commutative ring and let I < R.
We say that I is primeif abe I = a € I or b€ I for all a,b € R.

Problem 86. Let R be a commutative ring.
Show that {0} is a prime ideal if and only if R is an integral domain.

Problem 87. Let R be a commutative ring and let I < R.
Show that I is prime if and only if R/I is an integral domain.

Definition 29. Let R be a commutative ring and let I < R.
We say that I is mazimal if whenever I C J < R, then either J =1 or J = R.

Problem 88. Let R be a commutative ring.
Show that {0} is maximal if and only if R is a field.

Problem 89. Let R be a commutative ring and let I < R.
Show that I is maximal if and only if R/I is a field.
(Hint: use the Correspondence Theorem.)

Problem 90. Let R be a commutative ring and let I < R.
Show that if I is maximal, then [ is prime.

Problem 91. Let R be a pid and let I < R be a nontrivial proper ideal.
Show that I is maximal if and only if [ is prime.

Problem 92. Let R be a pid and let I < R be a nontrivial proper ideal.
Show that R/I is either a field or a nondomain.

Problem 93. Let ¢ : R — S be a ring homomorphism, where R is a pid.
Show that ¢(R) is either a field or a nondomain.

Problem 94. Let R and S be commutative rings and let ¢ : R — S be a ring homomorphism. Let J < S.
(a) Show that if J is prime, then ¢~1(J) is prime.
(b) Show that if J is maximal, then ¢~1(J) is maximal.
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Irreducible and Prime Elements

Definition 30. Let R be a commutative ring and let a,b € R.
We say that a divides b, and write a | b, if there exists ¢ € R such that b = ac. Otherwise we write a 1 b.

Definition 31. Let R be a commutative ring and let a,b € R®.
We say that a and b are associates, and write a ~ b, if a | b and b | a.

Problem 95. Let R be a commutative ring and let a,b € R®.
(a) Show that a ~ b if and only if there exists an invertible element u € R such that b = ua.
(b) Show that ~ is an equivalence relation on R*®.

Problem 96. Let R be a commutative ring and let a,b € R®.
(a) Show that bR C aR if and only if a | b.

(b) Show that bR = aR if and only if a ~ b.

(c) Show that abR C aR NbR.

Definition 32. Let R be a commutative ring and let p € R®* ~ R*.
We say that p is irreducible if whenever p = ab, then either a is invertible or b is invertible.
We say that p is prime if whenever p | ab, then either p | a or p | b.

Problem 97. Let R be a commutative ring and let p,u € R, where u is invertible.
(a) Show that if p is irreducible, then so is up.
(b) Show that if p is prime, then so is up.

Problem 98. Let D be an integral domain and let p € D.
Show that p is a prime element if and only if pD is a prime ideal.

Problem 99. Let D be a pid and let p € D.
Show that pD is maximal if and only if p is irreducible.

Problem 100. Let D an integral domain and let p € D.
Show that if p is prime, then p is irreducible.

Problem 101. Let D be a pid and let p € D.
Show that p is prime if and only if p is irreducible.
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Common Divisors and Multiples

Definition 33. Let R be a commutative ring and let a,b € R®.

We say that d € R® is a greatest common divisor of a and b, and write d F ged(a, b), if
(GCD1) d|a and d | b;
(GCD2) e|aande|b=e]d.

Problem 102. Let D be an integral domain and let a,b,d, e,u € D, where u is invertible.
(a) Show that if d F ged(a, b), then ud E ged(a, b).
(b) Show that if d F ged(a, b) and e E ged(a, b), then d ~ e.

Problem 103. Let D be a pid and let a,b € D. Show that there exists d € D such that d F ged(a, ).

Problem 104. Let D be a pid and let a,b € D. Let d E ged(a, b).
Show that there exist x,y € D such that d = ax + by.

Definition 34. Let R be a commutative ring and let a,b € R®.

We say that [ € R® is a least common multiple of a and b, and write [ F lem(a, b), if
(LCM1) a|land b|;
(LCM2) a|mand b|m=1]|m.

Problem 105. Let D be an integral domain and let a,b,l,m,u € D, where u is invertible.
(a) Show that if I F lem(a, b), then ul F lem(a, b).
(b) Show that if I F lem(a, b) and m E lem(a, b), then I ~ m.

Problem 106. Let D be a pid and let a,b € D. Show that there exists | € D such that [ F lcm(a, b).

Problem 107. Let D be a pid and let a,b € D. Let d E ged(a,b) and [ F lem(a, b).
Show that ab ~ dl.

Definition 35. Let R be a commutative ring and let A C R®.

We say that d € R® is a greatest common divisor of A and write d F ged(A), if
(GCD1) d | a for every a € A;
(GCD2) e | a for every a € A = e | d.

Remark 16. This is a generalization of our previous definition of gcd, and coexists with it.

Problem 108. Let D be an integral domain. Let A C D and d,e,u € D, where u is invertible.
(a) Show that if d F ged(A), then ud E ged(A).
(b) Show that if d F ged(A) and e F ged(A), then d ~ e.

Problem 109. Let D be a pid and let A C D. Show that there exists d € D such that d E gcd(A).

Problem 110. Let D be a pid and let A = {aq,...,a,} C D. Let d F ged(A).
Show that there exist z; € D such that d =), | z;a;.

Definition 36. Let R be a commutative ring and let A C R®.

We say that [ € R® is a least common multiple of a and b, and write [ F lem(a, b), if
(LCM1) a|land b|;
(LCM2) a|mand b|m=1]|m.

Remark 17. This is a generalization of our previous definition of lem, and coexists with it.

Problem 111. Let D be an integral domain. Let A C D and let [, m,u € D, where u is invertible.
(a) Show that if I E lem(A), then ul F lem(A).
(b) Show that if I F lem(A) and m F lem(A), then [ ~ m.

Problem 112. Let D be a pid and let A C D. Show that there exists I € D such that [ F lem(A).
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Noetherian Rings

Definition 37. Let R be a commutative ring.
An ascending chain of ideals in R is a collection of ideals {I; | i € N} such that ¢ < j = I; C I;:

Ihvchclhc---Ccl;C...
Problem 113. Let R be a ring and let {I; | i € N} be an ascending chain of ideals. Show that U°,I; < R.

Definition 38. Let R be a commutative ring and let {I; | i € N} be an ascending chain of ideals.
We say that {I; | i € N} is eventually constant if there exists n € N such that I; = I,, for all i > n.
We say that R is noetherian if every ascending chain of ideals in R is eventually constant.

Problem 114. Let D be a pid. Show that D is noetherian.
(Hint: the union of an ascending chain of ideals in D is also a principal ideal.)

Problem 115. Let D be a pid and let a € D. Show that only finitely many prime ideals in D contain a.
(Hint: suppose not, and construct an ascending chain of ideals in D which is not eventually constant.)

Problem 116. Let D be a pid and let a,b € D. Show that there exists a unique nonnegative integer n such
that b" divides a but b"*! does not.

Problem 117. Let D be a pid and let a € D. Let p1,...,p, be generators for the distinct prime ideals
which contain a. Show that there exist unique positive integers nq, ..., n, such that

a~pit.ooplr.

Remark 18. We were after the above result, which we will use later. The following result will not be used
in later worksheets, but illuminates the nature of noetherian rings.

Definition 39. Let R be a commutative and let I < R.
We say the I is finitely generated if there exist aq,...,a, € R such that I = (ay,...,a,).

Problem 118. Let R be a commutative ring. Show that R is noetherian if and only if every ideal of R is
finitely generated.
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Unique Factorization Domains

Definition 40. Let R be an integral domain.
Let a € R. A complete factorization of a is a true expression of the form

T
my
a=]1#i"
i=1

where p; € R are irreducible elements and m; € Z are positive integers. Such an expression is call essentially
unique if whenever
S
"
a=]]g"
j=1

is another complete factorization of a, we have r = s and a permutation o € S, such that ¢; ~ ps; and
n; = Megi-

We say that R is a unique factorization domain (ufd) if every nonzero element of R has an essentially
unique complete factorization.

Problem 119. Let R be a pid. Show that R is a ufd.
Problem 120. Let R be a ufd and let a € R. Show that a is prime if and only if a is irreducible.

Problem 121. Let R be a ufd and let a,b € R.

(a) Show that there exists d € R such that d F ged(a,b).
(b) Show that there exists [ € R such that [ = lem(a, b).
(c) Show that ab ~ dl.

Problem 122. Let R be a ufd and let a,b € R.
Show that aR N bR = abR < 1 F ged(a, b).

Definition 41. Let R be a commutative ring.
We say that R is seminoetherian if every ascending chain of principal ideals is eventually constant.

Problem 123. Let R be a ufd. Show that R is seminoetherian.

Fact 1. Let R be an integral domain. Then following conditions are equivalent:
(1) R is a ufd;

(2) R is seminoetherian and every irreducible element of R is prime;

(3) R is seminoetherian and every pair of nonzero elements in R has a ged.
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Quotient Fields

Definition 42. Let D be an integral domain and let F' be a field which contains D.
We say that F is a quotient field of D if for every x € F there exist a,b € D such that x = ab™".

Example 1. Clearly Q is a quotient field for Z.

Problem 124. (Relabeling Lemma)
Let R and S be rings. Let ¢ : R — S be an injective ring homomorphism. Show that there exists a ring S
which contains R and an isomorphism ¢ : S — S such that ¥ o ¢(a) = a for every a € R.

Problem 125. (Existence of Quotient Fields)
Let R be a commutative ring.
(a) Show that if a,b € R®, then ab € R®. Also note that 1 € R®.
Define a relation = on R x R*® by
(a,b) = (¢,d) < ad = be.

(b) Show that = is an equivalence relation.
Denote the equivalence class of (a,b) by [a,b], so that (a,b) = (¢,d) < [a,b] = [¢,d]. Set

S ={[a,b] |a € Rand b e R*}.
Define addition and multiplication on S by
[a,b] + [¢,d] = [ad + bc,bd]  and  [a,b] - [c,d] = [ac, bd)].

(c) Show that these operations of addition and multiplication on S are well defined.

(d) Verify that S is a commutative ring.

(e) Show that the function ¢ : R — S given by ¢(a) = [a, 1] is an injective homomorphism.

(f) Show that there exists a ring S isomorphic to S such that S contains R and every entire element of R
is invertible in S.

(g) Show that if R is an integral domain, then S is a quotient field for R.

Problem 126. (Universal Property of Quotient Fields)
Let D be an integral domain and let F' be a quotient field of D. Let E be a field containing D. Show that
there exists a unique injective homomorphism ¢ : F' — E such that ¢(a) = a for every a € D.

Problem 127. Let D be an integral domain and let F' be a field containing D. Suppose that for every field
E containing D there exists a unique homomorphism ¢ : F' — FE such that ¢(a) = a for every a € D. Show
that F'is a quotient field for D.

Problem 128. Let D be an integral domain and let E be a field containing D. Set
afg(D) ={x € F |2 = ab™! for some a,b € D}.

(a) Show that qfz(D) is a field.

(b) Show that qfy (D) is a quotient field for D.
(¢) Show that qf (D) = gf (D).

We call qf5(D) the quotient field of D in E.

Problem 129. Let E be a field and let D be a subring of E. Let F = qfy(D).
Let ¢ : E — FE be an automorphism of E such that ¢ [p=idp. Show that ¥ [p=idp.

Problem 130. Let D be a pid and let F' be a quotient field for D. Let = € F.
Show that there exist a,b € D with 1 F ged(a,b) such that ab™! = .
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Polynomials

Definition 43. Let R be a commutative ring. A polynomial (in one indeterminant) over R is a sequence
f N — R such that f(n) = 0 for all but finitely many n € N.

Let R[X] be the set of all polynomials over R, where X is the sequence (0,1,0,0,0,...).

Define addition and multiplication on R[X] by

(ai)i + (bi)i = (@i + bi)is

(ai)i - (bi)i = ( Z a;jbg);.

JHk=i

Fact 2. Every element of R[X] is of the form f =>"" ;a;X;, wheren € Nand a; € Rfori=1,...,n.
Moreover, R[X] is a commutative ring, and R embeds in R[X] via a — (a,0,0,0,...); we consider R to
be a subring of R[X].

Definition 44. Let R be a commutative ring and let f = (a;) € R[X]. Then degree of f is denoted deg(f)
and is defined by deg(f) = max{n € N |a; # 0}. If f =0, we set deg(f) = —o0.

We call the a; the coefficients of f; ag is called the constant coefficient and a,, is called the leading
coefficient.

Problem 131. Let R be a commutative ring and let f, g € R[X].

(a) Show that deg(f + g) < max{deg(f),deg(g)};

(b) Show that deg(fg) < deg(f) + deg(g);

(c) Show that if R is an integral domain, then deg(fg) = deg(f) + deg(g).

Problem 132. Let D be an integral domain. Show that D[X] is an integral domain.
Problem 133. Let F be a field and let f € F[X]. Show that f is invertible if and only if f € F \ {0}.

Definition 45. Let R be a subring of a commutative ring S. Let f € R[X]; then f = 31" ja;X*. Let
s€ S andset f(s) =D ja;is' €S. We call f(s) f evaluated at s. In particular, note that R < R[X], and
f(X) = f in this context. If f(s) = 0g, we say that s is a zero, or root, of f.

Problem 134. (Universal Property of Polynomial Rings)
Let R be a subring of a commutative ring S. Let s € S and define a function

¥s : RIX] — S by ¢s(f) = f(s).
Show that 15 is a homomorphism, called the evaluation homomorphism.

Problem 135. (Division Algorithm for Polynomials)

Let R be a commutative ring and let f,g € R[X] such that the leading coefficient of g is invertible. Show
that there exist unique polynomials ¢, € R[X] with deg(r) < deg(f) such that f = gq + r.

(Hint: consider the set {f — gq | ¢ € R[X]} C R[X]; this set contains a polynomial of minimal degree.)

Problem 136. Let R be a commutative ring. Let f € R[X] and let a € R.
Show that f(a) = 0 if and only if (X —a) | f(X).

Problem 137. Let R be an integral domain and let f € R[X] of degree n.
Show that f has at most n roots in R.
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Polynomial Factorization

Remark 19. Let R be a ring contained in a commutative ring S. Let f € R[X]. Since the coefficients of f
lie in R C S, we may naturally view f € S[X]. The primeness or irreducibility of f depends on whether we
view it as an element of R[X] or as an element of S[X].

Problem 138. Find a ring R contained in a commutative ring S and a polynomial f € R[X] such that f
is irreducible in R[X] but not in S[X].

Problem 139. Let F be a field and let f € F[X].
(a) Show that if f(x) is irreducible, then p(z) has no root in F'.
(b) Show that if deg(f) € {2, 3}, then f is irreducible if and only if f has no roots in F.

Problem 140. (Rational Roots Theorem)

Let D be an integral domain and let F' be a quotient field for D. Let f(X) = > I ¢; X" € D[X] and let
z € F such that f(z) = 0. Then there exist a,b € D with ged(a,b) = 1 such that z = ab~! € D.

Show that if f(z) =0, then a | ¢y and b | ¢,,.

Problem 141. Let R be a commutative ring and let [ < R. Set
IX] = {f(X) :ZCiXi ER[X]|¢elfori=0,...,n}.
i=0

Forae R,seta=a+1,and for f =" ;X" € R[X], set f =" &X"
Define ¢ : R[X] — F[X] by ¢(f) = f.
(a) Show that ¢ is a ring homomorphism.
(b) Show that I[X] < R[X].
(c) Show that % ~ Bix).
Definition 46. Let R be a commutative ring and let f € R[X].
roper factorization o 1s a factorization f = gh, where de < de and de < de .
A proper factorization of f is a factorization f = gh, where deg(g) < deg(f) and deg(h) < deg(f)

Problem 142. Find a ring R and a polynomial f such that f is not irreducible but has no proper factor-
ization.

Problem 143. (Gauss’s Lemma)
Let D be a pid and let f,g,h € D[X] such that f = gh. Let p € D be a prime element. Show that if p

divides every coeflicient of f, then either p divides every coefficient of g or p divides every coefficient of h.
(Hint: consider the ideal I = (p).)

Problem 144. Let D be a pid and let F' be a quotient field of D. Let f € D[X].
Show that if f is irreducible in F[X] if and only if f has no proper factorization in D[X].
(Hint: clear denominators, then cancel prime factors.)
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Polynomial Irreducibility Criteria

Problem 145. (Modular Irreducibility Test)

Let D be a pid and let F be a quotient field for D. Let f = Y7 ja; X" € D[X] and let p € D be a prime
element of D. Let D = D/(p) and let f be the reduction of f modulo (p). Suppose:

(1) p does not divide ay;

(2) f is irreducible in D[X].

Show that f is irreducible in F[X].

(Hint: suppose f reduces in F[X], and show that f reduces in D[X].)

Problem 146. (Eisenstein’s Criterion)

Let D be a pid and let F be a quotient field for D. Let f = Y1 ja; X" € D[X] and let p € D be a prime
element of D. Suppose:

(1) p divides a; for i =0,...,n —1;

(2) p does not divide ay;

(3) p? does not divide ag.

Show that f is irreducible in F[X].

(Hint: suppose that f reduces in F[X]; then f reduces in D[X]. Write f = gh where g,h € D[X], and
compare the coefficients of the product to the coefficients of f.)

Problem 147. Let p € Z be a prime integer and set
Pp(X)=1+X+ X244 XP7L

Show that ®,(X) is irreducible.
(Hint: first note that ®,(X) is irreducible if and only if ®,(X + 1) is irreducible.)

Fact 3. Let f € C[X] with deg(f) > 0. Then there exists z € C such that f(z) = 0.
Fact 4. Let f € C[X] be irreducible. Then deg(f) = 1.
Fact 5. Let f € R[X] be irreducible. Then either deg(f) =1 or deg(f) = 2.
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Minimum Polynomials

Definition 47. Let R be a subring of a commutative ring S and let s € S.
Set R[s] = grg(R U {s}); this is called the ring R extended by s.

Problem 148. Let R be a subring of a commutative ring S.
Let s € S and let ¢, : R[X] — S be evaluation at s. Show that ¢s(R[X]) = R][s].

Problem 149. Let F be a field. Show that F[X] is a pid.
(Hint: use the division algorithm.)

Remark 20. Let F' be a field; we list the facts about principal ideals and pids which we have collected and
are significant for F[X]:

o If (f) = (g), then f = ug for some invertible element u € F[X]. Since the invertible elements of F[X]
are the nonzero constants, we have u € F' \ {0}.

e If [ a F is a nonzero prime, then [ is maximal,

e Every quotient of F[X] by a nontrivial proper ideal is either a field or a nondomain;

o If f € F[X], then f is prime if and only if f is irreducible;

o If f, g € F[X], then there exists d € F[X] such that d F ged(f, g), and d = af +bg for some a,b € F[X].

Definition 48. Let R be a commutative ring and let f € R[X] be a nonconstant polynomial.
We say that f is monic if the leading coefficient of f is 1.

Problem 150. Let D be an integral domain and let f € D[X] be monic. Show that there exist unique
monic irreducible polynomials g1, ..., g, € D[X] such that f =[]\_, g;.

Problem 151. Let F be a field and let I < F[X].
Show that there exists a unique monic polynomial f € F[X] such that I = (f).

Problem 152. Let F be a field and let f,g € F[X].
Show that there exists a unique monic polynomial d € F[X] such that d F ged(f, g).

Definition 49. Let F be a subfield of a field F and let a € F.
The unique monic polynomial which generates the kernel of v, is called the minimum polynomial of «.

Problem 153. Let F' be a subfield of a field E and let a € E.
Let f € F[X] be the minimum polynomial of «.

(a) Show that F[X]/(f) = Fla].

(b) Show that (f) is a prime ideal.

(c) Show that f is either zero or is irreducible in F[X].

Definition 50. Let F be a subfield of a field E and let « € F.
We say that « is algebraic over F' if there exists a nonzero polynomial f € F[X] such that f(a) = 0.
Otherwise we say that « is transcendental over F.

Problem 154. Let F' be a subfield of a field F and let « € E \ F.

Let ¢ : F[X] — E be the evaluation map.

(a) Show that « is algebraic if and only if the minimum polynomial of o generates a maximal ideal.
(b) Show that if « is algebraic if and only if F[a] is a field.

(c) Show that « is transcendental if and only if the evaluation map v, is injective.

(d) Show that if « is transcendental if and only if Fla] & F[X].
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Splitting Fields

Definition 51. Let R be a commutative ring contained in a ring S and let s1,...,s, € S. Set R[s1,...,8,] =
gig(RU{s1,...,8,}); this is the ring R extended by s1,...,8,. If S = R[s1,..., S|, we say that sq,..., s,
generated S over R.

Definition 52. Let F' be a field contained is a field E and let f € F[X].

We say that f splits in E if f is the product of linear factors in E:

f(X):H(X—ai), where a; € Efori=1,...,n.
i=1

We say that F is a splitting field for f over F if there exist a1,...,a, € E such that
(SF1) f(X) =T[;L; (X — v);
(SF2) E = Flay,...,an].
Problem 155. Let F' be a field and let f € F[X] be an irreducible polynomial.
Let E = F[X]/(f); we have seen that E is a field. N
(a) Show that there exists an injective homomorphism ¢ : F' — E.
(b) Show that there exists a field E which is isomorphic to F and contains F.
(c) Show that there exists a € E such that f(a) = 0.
(d) Show that E = F[a].

Problem 156. Let F be a field and let f € F[X] be an irreducible polynomial.
Show that there exists a field E which is a splitting field for f over F.

Problem 157. Let F be a field and let f € F[X] be a nonconstant polynomial.
Show that there exists a field E which is a splitting field for f over F.

Problem 158. Let F be a field and let f € F[X] be a nonconstant polynomial.
Let E be a field in which f splits. Show that E contains a splitting field for f over F.

Multiple Roots

Definition 53. Let F be a field and let f € F[X]. We define the derivative of f(X) =" ,a; X" to be

F(X)=> ia; X"
i=0
Problem 159. Let F be a field and let f,g € F[X].
(a) Show that (f+¢) =f"+¢.
(b) Show that (fg)' = fg' + f'g.

Problem 160. Let F be a field and let f € F[X].

(a) Show that deg(f’) < deg(f) — 1.

(b) Show that if F' has characteristic zero, then deg(f’) = deg(f) — 1.

(c) Show that if F' has characteristic p > 0, there exists a polynomial f € F[X] such that deg(f’) < deg(f)—1.

Definition 54. Let F' be a field and let f € F[X]. Let E be a field containing F' in which f splits.
We say that a € E is a multiple root of f if (X —a)” | f(X) in E[X] for some n € N, n > 2. The
maximum such n is called the order of the root.

Problem 161. Let I be a field and let a € F.
Show that (X —a)? | f< (X —a) | fand (X —a) | f'.
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Vector Spaces

Definition 55. A wvector space over a field F' is a set V together with operations
+:VxV -V and --FxV >V

respectively called addition and scalar multiplication, satisfying:
(V) za+y=y+zforal a,yeV;

(V2)z+ (y+2)=(x+y)+zforal z,y,z €V,

(V3) there exists 0y € V such that = + 0y = x for every z € V;
(V4) for every x € V there exists —z € V such that = + (—z) = Oy;
(V5) 1p -z = x for every x € V;

(V6) (ab)x = a(bx) for every a,b € F and x € V;

(V7) (a+b)x = ax + bx for every a,b € F and z € V;

(V8) a(x +y) = ax + ay for every a € F and x,y € V.

Remark 21. Properties (V1) through (V4) say that (V,+) is an additive abelian group. Let End(V)
denote the collection of additive group homomorphisms of V.

Problem 162. Let V be a vector space over a field F. Let a € F and z € V.
(a) Show that Op - z = Oy

(b) Show that a -0y = Oy.

(c) Show that (—1p) - = —=z.

Problem 163. Let V be a vector space over a field F. Define a function ¢ : F — End(V) by ¢,(v) = av,
where ¢, means ¢(a) for each a € F. Show that ¢ is a ring homomorphism.

Problem 164. Let A be an additive abelian group and let F' be a field. Let ¢ : F — End(A) be a ring
homomorphism. Define scalar multiplication - : F X A — A by a-x = ¢,(x). Show that A together with
this scalar multiplication is a vector space.

Definition 56. Let V' be a vector space over a field F.
A subspace of V is a subset W C V such that
Wl) z,yeW=z+yeW;
(W2)aeFzeW=axeW.
If W is a subspace of V, this is denoted by W < V.

Problem 165. Let V' be a vector space over a field F' and let W < V. Show that the restriction of 4+ and
- to W induces a vector space structure on W.

Problem 166. Let V' be a vector space over a field F' and let W be a collection of subspaces of V.
Show that "W < V.

Definition 57. Let V be a vector space over a field F' and let X C V. The subspace generated by x
is denoted by gvy (X) and is defined to be the intersection of all subspaces of V' which contain X. This
subspace is called the span of X.

Problem 167. Let V be a vector space over a field F and let X = {vq,...,v,}. Show that

n
gvy (X) = {Zawz‘ |a; € F}.
=1
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Dimension

Definition 58. Let V be a vector space over a field F'. Let B C V.
We say that B spans V is for every x € V there exist a1,...,a, € F and vy,...,v, € B such that

T=>1" av;.
We say that B is linearly independent if whenever vq,...,v, € B are distinct elements of B and
a1,...,an € F,

n
Zaivi:0:>ai:Ofori:1,...,n.
i=1

We say that B is a basis for V if B spans V and is linearly independent.
Problem 168. Let V be a vector space over a field F' and let X C V span V. Show that V = gv,(X).

Problem 169. Let V be a vector space over a field F' and let X C V be linearly independent. Let v € X.
Show that gvy (X ~\ {v}) is a proper subset of gv, (X).

Problem 170. Let V be a vector space over a field F' and let X C V span V. Show that there exists a
subset B C X such that B is a basis for V.

Problem 171. Let V be a vector space over a field F' and let X C V be linearly independent. Show that
there exists a subset Y C V such that X UY is a basis for V.

Problem 172. Let V be a vector space over a field F. Let A = {vy,...,v} and B = {wy,...,w,} be
bases for V. Show that m = n.

Definition 59. Let V be a vector space over a field F. If V has a basis containing n elements, where n € N,
we say that V' is finite dimensional, and that n is the dimension of V; this is denoted by dim(V) = n.

Problem 173. Let V be a vector space over a field F and let U, W < V. Set U+W = {u+w |u € Ujw € W}.
(a) Show that U+ W < V.
(b) Show that dim(U + W) = dim(U) + dim(W) — dim(U N W).

Problem 174. Let F be a field and let n be a positive integer. Let F™ denote the cartesian product of F'
with itself n times. Show that F'™ is a vector space over F' of dimension n.

Definition 60. Let V and W be a vector spaces over a field F'.
A linear transformation from V to W is a function f : V' — W such that

(L1) f(x+y) = f(x)+ f(y) for every z,y € V;
(L2) f(ax) =af(x) for everya € F and z € V.

Definition 61. Let V and W be a vector spaces over a field F. Let f : V — W be a linear transformation.
The kernel of f is ker(f) ={z €V | f(z) = 0w }.

Problem 175. Let V and W be a vector spaces over a field F. Let f: V — W be a linear transformation.
Show that f is injective if and only if ker(f) = {0y }.

Problem 176. Let V and W be finite dimensional vector spaces over a field F'. Let f : V — W be a linear
transformation.

(a) Show that f(V) < W.

(b) Show that dim (V') = dim(ker(f)) + dim(f(V)).

Problem 177. Let V be a vector space over a field F. Let Endp (V) denote the set of all linear transfor-
mations from V into itself. Show that Endp(V) is a subring of End(V).

Problem 178. Let F be a field and let M,,(F') denote the set of n x n matrices over F.
Verify that M, (F') is a ring under the standard definitions of matrix addition and matrix multiplication.

Problem 179. Let V be a vector space over a field F' of dimension n.
Show that Endp(V) = M, (F) as rings.
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Field Extensions

Definition 62. A field extension E/F is a field F which is a subfield of a field E.

Problem 180. Let E/F be a field extension. Show that E is a vector space over F' via ring addition and
multiplication.

Definition 63. Let E/F be a field extension.
We say that E/F is finite if F is a finite dimensional vector space over F'. The degree of E/F is the
dimension of F as a vector space over F; this dimension is denoted by [E : F].

Problem 181. Let E/F be a field extension. Show that [F: F]=1< E=F.

Problem 182. Let F be a subfield of a field E and let aw € E be algebraic over F. Let f be the minimum
polynomial of « over F' and set n = deg(f) > 0.

(a) Show that Fla] = {0 bia’ | b; € F}.

(b) Show that Z?;OI bt = S0~ ¢;al if and only if by = ¢; for i =1,...,n — 1.

(c) Show that B = {1,q,...,a" 1} is a basis for F[a] as a vector space over F.

(d) Conclude that [F[a] : F] = deg(f).

Problem 183. Let E/F and K/E be finite field extensions. Show that
[K:F|=[K:E]E:F|.
(Hint: let {v;} C E be a basis for E/F and let {w;} C K be a basis for K/E. Consider {v;w;}.)

Problem 184. Let F be a field and let f € F[X] be an irreducible polynomial of degree n. Let E be a
splitting field if f over F'. Show that [E : F| divides n!.
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Isomorphism Theorem

Problem 185. Let C' = {f : R — R | f is continuous }; note that C is a ring under pointwise addition and
multiplication. Let I = {f € C'| f(0) = 0}. Show that I is a maximal ideal of C' and that C'/I = R.

Problem 186. Let R be a commutative ring. For f(X) =a¢+ a1 X + -+ + a, X" € R[X], define
o(f)=Y ai;  I={f(X)e€R[X]:a(f) =0}
=0

Show that I is an ideal of R[X] and that R[X]/I = R.
Problem 187. Let D be a pid and let a € D be a prime element. Define a function
v:D[X]—=D by ~a+aX+-+a,X")=ap.

Set
I={f(X) e D[X]:al~(f)}
Show that I is a maximal ideal of D[X] and that D[X]/I = D/aD.

Problem 188. Let R be a commutative ring. Show that

RIX] { a b
(X2 — L\0 a
Problem 189. Let R be a commutative ring and let M7, Ms<R be distinct maximal ideals. Let I = MyNM>.
Show that I is an ideal of R and that R/I is not a domain.

a,beR}.

Problem 190. Let ¢ : R — S be a ring homomorphism. Let J = ker(¢) and let I < R such that I C J.
Show that there exist homomorphisms «: R — R/I and 8 : R/I — S such that ¢ = o a.

Direct Product

Problem 191. Let R and S be rings and let A C R x S. Set
T={reR|(r,s)€ Aforsome s€ S} and U={seS|(rs)e€ Afor somer € R}.
Show that A< Rx Sifandonly if T< R, U< S,and A=T x U.
Problem 192. Let R and S be commutative rings. Set
T={(r,s)eRxS|s=0} and U={(r,s)eRxS|r=0}

Define p; : Rx S — Rby p1(r,s) =r and ps : R x S — S by pa(r,s) = s.

(a) Show that T<R x S and U< R x S.

(b) Show that p; and py are ring homomorphisms with ker(p;) = U and ker(p2) = T
(c) Show that R x S/T = S and R x S/U = R.

Problem 193. Let R and S be commutative rings. Let m = char(R) and n = char(5).
Find char(R x S) in terms of m and n.



Polynomials

Problem 194. Let R be a commutative ring in which every nonzero element is a root of f(X) = X?—1=0.
Show that R is commutative.

Problem 195. Let F' be a finite field of cardinality 1331.

Show that the polynomial f(X)= X2+ X + 1 is irreducible over F.

(Hint: Note that X? —1 = (X —1)(X2+ X + 1) and that F* is a group under multiplication; what are the
possible orders of its elements?)

Problem 196. Let F' be a finite field of cardinality 343.
Show that the polynomial f(X) = X5+ X% + X3 + X2 + X + 1 splits in F[X].

Problem 197. Find all square roots of —1 in Zj;.

Problem 198. Let F' be a finite field of cardinality 243.
Show that v/—1 does not exist in F.

Problem 199. Let F' be a finite field of cardinality ¢, and suppose that ¢ =3 mod 4.
Show that the polynomial f(X) = X? + 1 is irreducible over F.

Problem 200. Show that Zs;[X]/{(X? — 15X — 1) is not a field.

Problem 201. Let R = Z3[X] be the ring of polynomials over Zs.
Find an ideal A < R such that R/A is a nondomain with six elements.

Problem 202. Find three nonisomorphic rings of cardinality four.

Problem 203. Classify each commutative ring as one of the following:
(F) a field;

(P) a pid which is not a field;

(D) a domain which is not a pid;

(R) a ring which is not a domain.

Justify your answer in each case.

(a) Z[X]/I, where I = (X — 16);

(b) Z[X]/I, where I = (X° — 32);

(c) Z|X]/1, where I = (17);

(d) Z[a], where a = £ € Q;

(e) Q[X]/I, where I = (X — 16);

(£) Q[X]/I, where I = (X3 + 15X2 + 8X + 40);

(g) Q[X]/I, where I = (X* +2X2 4+ 1);

(h) Q[X]/I, where I = (X® +6X* +10X3 +8X + 18);
(i) Q[a], where o = v/v/2 + 5V6 € R;

(j) R[X]/I, where I = (X% — 9X + 3);

(k) R[a], where a € C;

(1) C[a], where E/C is a field extension and a € E \ C.



Idempotents

Definition 64. Let R be a ring and let a € R.
We say that a is idempotent if a® = a.

Problem 204. Let R be a commutative ring and let a € R be idempotent.
(a) Show that 1 — @ is idempotent.

(b) Show that aR is a commutative ring with identity element a.

(c) Show that R = aR x (1 — a)R as rings.

Problem 205. Let F be a field. Find a subring of F' x F which is isomorphic to F[X]/({X? — X).

Definition 65. Let R be a ring.
We say that R is Boolean if every element in R is idempotent.

Problem 206. Let R be a Boolean ring.
(a) Show that char(R) = 2.
(b) Show that R is commutative.

Nilpotents

Definition 66. Let R be a ring and let a € R.
We say that a is nilpotent if there exists n € N such that a™ = 0.
We say that R is nilpotent free if the only nilpotent elements of R is 0.

Problem 207. Let R be a commutative ring and set
I ={a € R| ais nilpotent}.

(a) Show that I < R.
(b) Show that R/I is nilpotent free.

Definition 67. Let R be a commutative ring and let I < R.
We say that I is radical if a™ € I = a € I, where a € R and n € N.
The radical of I is defined by

VI={a€eR|a" eI for some n € N},

Problem 208. Let R be a commutative ring and let I < R.
(a) Show that /T < R.

(b) Show that T = v/V/T.
(c) Show that I is a radical ideal if and only if I = +/T.

Problem 209. Let R be a commutative ring and let I < R.
Show that I is radical if and only if R/I is nilpotent free.

Problem 210. Let R be a commutative ring and let I be the intersection of all the prime ideals of R.
(a) Show that I < R.

(b) Show that R/I is nilpotent-free.

(c) Conclude that I is a radical ideal.



Algebraic Closure

Definition 68. A field K is called algebraically closed if every polynomial in K[X] has a root in K.

Definition 69. Let K be an algebraically closed field and let f € K[X] be an irreducible polynomial. Show
that deg(f) =1

Problem 211. Let K be an algebraically closed field.
Show that there exists a bijective correspondence between the maximal ideals of K[X] and the points of K.

Problem 212. Let K be an algebraically closed field. Let E/K be a field extension and let o € E \ K.
Show that « is transcendental over K.

Fact 6. The field C is algebraically closed.

Problem 213. Find all ideals in the ring C[X]/(X?) and determine if they are principal, prime, and/or
maximal.

Problem 214. Find all ideals in the ring C[X,Y]/(X?) and determine if they are principal, prime, and/or
maximal.

Ring of Functions

Problem 215. Let X be a nonempty set and let F' be a field. Let A = {f : X — F}. Then A is a ring
under pointwise addition and multiplication.

For Y C X, set
AY)={f:Y - F}
For Y C X, set
EY)={feA|flyy=0forallyeY}.
For I < A, set

V)={x€ A| f(y)=0forall f eI}

Let J be the collection of ideals of A and let P be the collection of subsets of X.
Let Y, Z C X and I, J < A.

(a) Show that E(Y) < A.

(b) Show that Y C Z < E(Y) > E(Z).

(c) Show that I € J < V(I) D V(J).

(d) Show that V(I +J) = V(I) NV (J).

(e) Show that V(INJ)=V({I)UV(J).

(f) Show that E(Y U Z) = E(Y) N E(Z).

(g) Show that E(Y N Z) = E(Y)+ E(Z).

(h) Show that V' : J — P is a bijective function with inverse £ : P — J.
(i) Show that A is a principal ring which is usually not a domain.

(j) Show that I is maximal if and only if I = V({z}) for some z € X.
(k) Show that if z € X, then A/E({z}) = F

(1) Show that A/E(Y) = A(Y).



